

A Comprehensive Guide to Raw Material Risk Assessment for the Food Industry

Compiled by: Food Safety Ninja, Bennii E. Van Rooy - October 2025From compliance to confidence. From theory to mastery.

A Comprehensive Guide to Raw Material Risk Assessment for the Food Industry

Part I: Foundational Frameworks for Raw Material Risk Assessment

1.1. The GFSI Mandate and the Modern Approach to Raw Material Control

The modern food industry operates under a paradigm of proactive, preventative control, a shift largely driven by the Global Food Safety Initiative (GFSI). GFSI establishes common global industry standards by benchmarking food safety certification programs such as BRCGS and FSSC 22000. A core mandate across these GFSI-benchmarked standards is the requirement for food businesses to conduct and maintain a documented risk assessment for all raw materials, including ingredients, additives, processing aids, and primary packaging. This requirement moves beyond traditional quality control, demanding a holistic and anticipatory approach to managing all potential threats.

This comprehensive strategy is conceptualized under the "Food Safety Management Umbrella," which recognizes that threats to the final product are multifaceted. This umbrella consists of three distinct but complementary pillars: Food Safety (unintentional hazards), Food Fraud (intentional deception for economic gain), and Food Defence (intentional, malicious attacks). Consequently, a single risk assessment methodology is no longer sufficient. An organization must employ different analytical frameworks to address the full spectrum of risks, as the motivation and nature of an accidental microbiological contamination are fundamentally different from those of an economically motivated substitution or a malicious act of sabotage.

1.2. Integrating Methodologies: A Unified Approach to Safety, Authenticity, and Defence

To effectively manage the diverse risks associated with raw materials, GFSI has defined three primary risk management systems, each tailored to a specific type of threat. Understanding the distinct purpose and methodology of each is fundamental to building a compliant and effective food safety management system.

- HACCP (Hazard Analysis and Critical Control Point): This is the most established system, designed to manage food safety risks. It provides a systematic, preventative approach to identify, evaluate, and control unintentional hazards—biological, chemical, and physical agents that can cause harm or loss through accident, incompetence, or ignorance. The HACCP methodology is predicated on analyzing "risks," which are events that have occurred with some frequency in the past, allowing for a statistical or probability-based assessment.
- TACCP (Threat Assessment and Critical Control Point): This system is focused on food defence. It is a process to assure the security of food and its supply chain from intentional, malicious, and often ideologically motivated attacks intended to cause widespread public health harm or supply disruption.¹ TACCP evaluates specific "threats" from individuals or groups with the intent to harm.⁴
- VACCP (Vulnerability Assessment and Critical Control Point): This system is
 dedicated to preventing food fraud. It focuses on identifying and mitigating
 "vulnerabilities" within the supply chain that could be exploited for economic gain.¹ Food
 fraud is committed when food is intentionally placed on the market to deceive the
 consumer for financial benefit.⁴

A critical distinction that shapes these methodologies is the difference between a "risk" and a "vulnerability." A food safety risk, as addressed by HACCP, is typically an observable and quantifiable hazard based on historical data. In contrast, a food fraud vulnerability is a weakness or a "state of being" that exposes a raw material to potential fraud. This susceptibility may exist even if no fraudulent incident has ever been recorded for that material. It is driven by factors such as economic pressures and supply chain complexity, which are dynamic and require a different analytical mindset focused on human behavior and market conditions rather than just historical contamination data. While GFSI defines these three pillars as separate, some bodies, such as Campden BRI, view TACCP and VACCP as interrelated processes. For clarity and compliance with GFSI standards, it is best practice to address them individually, recognizing their unique objectives.

Table 1: Comparison of HACCP, VACCP, and TACCP Systems

System	Primary Focus	Nature of Threat	Key Question	Assessment Methodolo gy	Typical Control Measures
НАССР	Food Safety	Unintention al contaminati on (biological, chemical, physical)	"What are the potential hazards and where can they be controlled?"	Hazard analysis based on severity and likelihood (risk)	Prerequisite Programs (PRPs), Critical Control Points (CCPs) like cooking, pasteurizati on, metal detection
VACCP	Food Fraud (Authenticit y)	Intentional deception for financial gain	"How attractive and easy is it to defraud this material?"	Vulnerabilit y analysis of motivations , opportuniti es, and control measures	Supplier verification, authenticity testing, mass balance analysis, secure supply chain, horizon scanning
TACCP	Food Defence	Intentional, malicious, or ideological attack to cause harm	"Who might want to attack our product and how could they do it?"	Threat assessment of potential attackers, their motivation, and capabilities	Site security, access control, personnel security, supply chain protection, crisis

		manageme nt plan

1.3. Principles of Hazard Analysis (HACCP) for Food Safety Risks

The Hazard Analysis and Critical Control Point (HACCP) system, as defined by the Codex Alimentarius General Principles of Food Hygiene (CXC 1-1969), provides the internationally recognized framework for managing food safety hazards.⁷ Its application to raw materials is a foundational element of any food safety program. The system is built upon prerequisite programs (PRPs) such as Good Hygiene Practices (GHP), which control the general operational environment, and the seven core principles.⁹

- 1. **Conduct a Hazard Analysis:** For each raw material (ingredient, additive, packaging), all potential biological, chemical, physical, radiological, and allergenic hazards must be identified. This involves considering hazards inherent to the material, those that could be introduced during primary production and transport, and those that could develop during storage.
- 2. **Determine Critical Control Points (CCPs):** A CCP is a step at which control can be applied and is essential to prevent or eliminate a food safety hazard or reduce it to an acceptable level. For raw materials, the receiving step is often a CCP for hazards that will not be controlled by subsequent processing (e.g., verifying the temperature of a chilled ingredient).
- 3. **Establish Critical Limits:** For each CCP, a maximum or minimum value must be established to which a hazard must be controlled. For example, a critical limit for receiving refrigerated raw meat might be a temperature of or below.
- 4. **Establish a Monitoring System:** Procedures must be in place to monitor the CCPs to ensure they remain within their critical limits. This could involve checking and recording the temperature of every delivery of a critical raw material.
- 5. **Establish Corrective Actions:** Pre-planned actions must be defined for when monitoring indicates that a CCP is not within its critical limit. For a raw material, this would typically involve rejecting the delivery and documenting the incident.
- 6. **Establish Verification Procedures:** Activities, other than monitoring, that determine the validity of the HACCP plan and that the system is operating according to the plan. For raw materials, this includes reviewing receiving records, calibrating thermometers, and conducting supplier audits.
- 7. **Establish Documentation and Record Keeping:** All procedures, monitoring results, corrective actions, and verification activities related to the HACCP system must be documented and maintained.

1.4. Principles of Vulnerability Assessment (VACCP) for Food Fraud Risks

As mandated by GFSI, every organization must have a documented food fraud vulnerability assessment to identify and address its susceptibility to economically motivated adulteration. The VACCP process is fundamentally different from HACCP; it analyzes the drivers that create a "fertile ground" for fraud to occur. These drivers are broadly categorized into three areas: opportunities, motivations, and the adequacy of control measures. 5

- Opportunities: These are weaknesses or flaws in the supply chain that a fraudster could exploit. A thorough assessment must evaluate factors such as:
 - Supply Chain Complexity: Long, non-transparent, and global supply chains increase the number of points where fraud can occur undetected.⁴
 - Technology and Knowledge: The availability of technology and scientific knowledge needed to perform the adulteration and to mask it from routine testing.⁸
 - Accessibility and Transparency: The physical accessibility of the raw material during transit and storage, and the general lack of transparency in the chain network.⁸
- Motivations: These are the drivers, almost always economic, that create the incentive to commit fraud. Key motivational factors include:
 - Economic Pressures: High prices for the authentic material, significant price fluctuations, or price asymmetries between different geographic markets create a strong temptation to substitute with cheaper alternatives.⁸
 - Valuable Components: The presence of a highly valuable component (e.g., a specific fatty acid profile in an oil) or attribute (e.g., "organic") that can be faked or diluted.⁸
 - Industry and Cultural Factors: The general economic health of the sector, the level of competition, and the prevailing ethical business culture can either encourage or discourage fraudulent behavior.⁸
- Control Measures (or lack thereof): These are the systems and procedures in place to prevent, deter, or detect fraud. The inadequacy of these controls is itself a vulnerability. The assessment should review:
 - Supplier Management: The rigor of the supplier approval and verification process.
 - Traceability and Integrity: The strength of traceability systems and the integrity screening of employees and contractors.⁸
 - Analytical Capabilities: The availability and use of methods designed to detect adulteration, which may go beyond standard quality control tests.⁸
 - Historical Evidence: A review of historical fraud incidents within the sector for that

Part II: Risks to Food Safety: A Hazard-Based Analysis

2.1. Microbiological Hazards

Microbiological contamination remains one of the most significant food safety risks associated with raw materials. A thorough hazard analysis requires a technical understanding of the key pathogenic microorganisms, their characteristics, and the conditions that allow them to survive and proliferate. Authoritative sources such as the U.S. Food and Drug Administration's (FDA) "Bad Bug Book" provide essential information for this assessment.¹³ Hazards can range from live pathogenic bacteria, viruses, and parasites to non-living entities like microbial toxins.¹⁴

The assessment for each raw material must consider the specific pathogens commonly associated with it. For example, *Salmonella spp.* are widespread in the environment and frequently linked to raw meats, poultry, eggs, milk, and seafood. These Gram-negative, motile bacteria can cause salmonellosis with an infective dose as low as 15-20 cells, depending on the host's health and the bacterial strain. Control relies on preventing contamination at the source (farm level) and strict temperature control during transport and storage, as proper refrigeration can keep bacteria from multiplying to numbers that can cause illness. In the same part of the s

In contrast, *Listeria monocytogenes* presents a different challenge. This Gram-positive bacterium is notable for its ability to grow at refrigeration temperatures, making the cold chain a control measure for growth rate but not a guarantee of prevention.¹⁴ It is commonly associated with raw milk, soft cheeses, deli meats, and smoked fish.

The hazard analysis must also consider whether subsequent processing will eliminate the hazard. While cooking to a proper temperature kills most vegetative bacteria like *Salmonella* and *Listeria*, it does not eliminate heat-stable toxins produced by bacteria like *Staphylococcus* aureus or *Bacillus cereus*. Similarly, some bacteria form highly resistant spores (e.g., *Clostridium perfringens, Clostridium botulinum*) that can survive cooking and germinate into vegetative cells if the food is improperly cooled. Therefore, if a raw material is contaminated with a spore-former or a toxin-producing organism, relying solely on a downstream heat step

may be insufficient.

Beyond bacteria, the risk assessment must also include viruses (e.g., Norovirus, Hepatitis A), which can contaminate produce and seafood, and parasites (e.g., *Cryptosporidium*, *Giardia*) often associated with contaminated water used in agriculture.¹⁸

Table 2: Major Foodborne Pathogens and Associated Raw Materials

Pathogen	Key Characteristics	Common Raw Material Vectors	Critical Control Factors
Salmonella spp.	Gram-negative, non-spore-forming. Widespread in animals.	Raw meats, poultry, eggs, milk and dairy products, fish, shrimp, spices, raw produce	Temperature control, supplier GHP/GMP, prevention of cross-contaminatio n
Listeria monocytogenes	Gram-positive, non-spore-forming. Grows at refrigeration temperatures.	Raw milk, soft cheeses, deli meats, smoked fish, raw vegetables (e.g., cabbage)	Strict temperature control (), pH control, sanitation, shelf-life management
Escherichia coli (pathogenic strains, e.g., O157:H7)	Gram-negative, non-spore-forming. Some strains produce potent toxins.	Raw or undercooked ground meat, raw milk, contaminated produce (e.g., leafy greens)	Supplier verification (farm controls), cooking, prevention of cross-contaminatio n
Clostridium perfringens	Gram-positive, spore-forming. Grows in anaerobic conditions. Spores survive cooking.	Raw meat and poultry, dried or pre-cooked foods, spices	Proper cooling after cooking, temperature control (hot holding/refrigeratio n)
Bacillus cereus	Gram-positive, spore-forming. Can produce	Rice, starchy foods, spices, milk, vegetables	Proper cooling after cooking, temperature

	heat-stable toxins.		control
Staphylococcus aureus	Gram-positive, non-spore-forming. Produces heat-stable enterotoxins.	Foods handled by people: salads, bakery products, dairy products, meats	Good personal hygiene of handlers, temperature control to prevent growth and toxin production

2.2. Chemical Hazards

Chemical hazards in raw materials are diverse and can originate from agricultural practices, environmental pollution, natural sources, or processing. The European Food Safety Authority (EFSA) provides a useful framework for categorizing these contaminants, which aids in a systematic risk assessment.¹⁹ A critical aspect of managing chemical risks is understanding that their presence can render a product both unsafe and illegal.

2.2.1. Agricultural Residues

These are chemicals intentionally used in agriculture that can remain in or on raw materials.

- Pesticides: Traces of pesticides on fruits, vegetables, grains, and other crops are a primary concern. Regulatory bodies in most countries establish Maximum Residue Limits (MRLs), which are the highest legally tolerated levels of a pesticide residue in or on a food commodity.²⁰ It is crucial to understand that MRLs are primarily trade standards based on Good Agricultural Practice (GAP) and are set at conservative levels; exceeding an MRL makes a product illegal but does not automatically mean it is unsafe.²⁰ Regulations vary significantly between jurisdictions, so raw materials must comply with the MRLs of the final market.²² For example, South Africa's Foodstuffs, Cosmetics and Disinfectants Act specifies MRLs for a wide range of chemical-foodstuff combinations.²³
- **Veterinary Medicines:** Animal-derived raw materials such as meat, milk, eggs, and honey can contain residues of veterinary drugs like antibiotics, growth promoters, or parasiticides. The presence of unauthorized substances or residues above established limits poses both a safety risk (e.g., allergic reactions, antimicrobial resistance) and a

2.2.2. Environmental Contaminants

These substances enter the food chain from the environment, often as a result of industrial activity or natural occurrence, and can accumulate in plants and animals.¹⁹

- **Heavy Metals:** Metals like arsenic, cadmium, lead, and mercury are naturally present in soil and water but can be concentrated by human activities.³⁰ They can accumulate in specific raw materials, posing a long-term health risk. Notable examples include mercury in large predatory fish (e.g., tuna, swordfish), cadmium in leafy vegetables and grains, and inorganic arsenic in rice.³⁰
- Persistent Organic Pollutants (POPs): These are industrial chemicals that are highly resistant to degradation. They include dioxins and polychlorinated biphenyls (PCBs), which accumulate in the fatty tissues of animals. Raw materials like fish oil and animal fats are therefore at higher risk.¹⁹ Brominated flame retardants are another group of concern.¹⁹
- Per- and polyfluoroalkyl substances (PFAS): Known as "forever chemicals," PFAS are an emerging group of environmental contaminants that can accumulate in water, soil, and subsequently in crops and animals.¹⁹

2.2.3. Natural Toxins

These are toxic compounds produced naturally by living organisms.

- Mycotoxins: These are toxic secondary metabolites produced by fungi (moulds) that can grow on various crops before or after harvest. They are a significant concern in grains, nuts, spices, and dried fruit. Examples include aflatoxins (potent carcinogens), ochratoxin A, and fusarium toxins.¹⁸
- Plant Toxins (Phytotoxins): Many plants naturally produce toxic compounds as a
 defence mechanism. These can contaminate food if toxic plants are accidentally
 harvested along with crops. Examples include pyrrolizidine alkaloids in herbs and teas,
 glycoalkaloids in green or damaged potatoes, and lectins in improperly cooked beans.¹⁸

2.2.4. Process Contaminants

These chemicals are not present in the raw material itself but are formed from its natural constituents during processing, particularly at high temperatures. ¹⁹ While formed later, the risk potential is inherent to the raw material's composition. For example, the formation of acrylamide is linked to the presence of the amino acid asparagine and reducing sugars in raw materials like potatoes and cereals when they are fried, roasted, or baked. ¹⁹ Therefore, the selection of raw material varieties with lower precursor levels is a key preventative control.

2.2.5. Banned and Unapproved Substances

This category often overlaps with food fraud but represents a direct chemical safety hazard. It involves the intentional addition of illegal and often harmful substances to food. High-profile examples include the use of industrial dyes like Sudan I or Azorubine (Carmoisine) in spices to enhance color, malachite green (an antifungal) in aquaculture, and melamine in milk to artificially inflate protein measurements. The use of such substances is not only illegal but can have severe health consequences, including cancer and kidney failure.

The interconnectedness of these hazard categories is a crucial point. For instance, the use of a lead-based dye in turmeric is simultaneously a chemical safety hazard (lead is toxic), a legal violation (the dye is a banned substance), and a form of food fraud (an unapproved enhancement for economic gain).³⁴ A comprehensive risk assessment must recognize these overlaps to address the root cause of the problem, which is often the fraudulent motivation.

Table 3: Categorization of Chemical Contaminants in Food Raw Materials

Category	Sub-Category	Definition/Sour ce	Specific Examples	High-Risk Raw Materials
Agricultural Residues	Pesticides	Chemicals used for crop protection.	Organophosph ates, pyrethroids, glyphosate	Fruits, vegetables, cereals, tea, spices
	Veterinary Drugs	Medicines used in animal husbandry.	Antibiotics, hormones, antiparasitics	Meat, milk, eggs, honey, farmed fish

Environmenta I Contaminants	Heavy Metals POPs & others	Natural or industrial pollution; bioaccumulate . Industrial chemicals persistent in the environment.	Lead, Cadmium, Mercury, Arsenic Dioxins, PCBs, Brominated Flame Retardants, PFAS	Seafood (Mercury), rice (Arsenic), leafy greens (Lead, Cadmium) Animal fats, fatty fish, dairy products
Natural Toxins	Mycotoxins	Produced by moulds on crops.	Aflatoxins, Ochratoxin A, Deoxynivalenol	Cereals (corn, wheat), nuts (peanuts, pistachios), spices, dried fruit
	Plant Toxins	Naturally produced by plants.	Pyrrolizidine alkaloids, Glycoalkaloids, Cyanogenic glycosides	Herbal teas, honey, improperly prepared beans, green potatoes
Process Contaminants	Thermal Process	Formed from precursors in raw materials during high-heat processing.	Acrylamide, Furans, PAHs	Potatoes, cereal products, coffee, smoked meats and fish
Banned/Illega I Substances	Unapproved Additives	Substances illegally added for fraudulent or technical purposes.	Melamine, Sudan dyes, Malachite green	Milk powder (Melamine), spices (dyes), farmed fish (Malachite green)

2.3. Physical Hazards

Physical contamination of food with foreign bodies is a major cause of consumer complaints and product recalls.³⁷ A physical hazard is any extraneous object or foreign matter in a food item that may cause illness or injury to the consumer. These hazards can be categorized as either intrinsic or extrinsic.

- Intrinsic Hazards: These are materials that are a natural part of the raw material but are undesirable in the final product. Examples include stones in fruits like olives or peaches, bones in meat or fish, and shells in nuts.³⁷ While natural, they can cause harm such as choking or tooth damage and must be controlled through processing.
- Extrinsic Hazards: These are contaminants that have been introduced to the product from an external source. Common extrinsic hazards associated with raw materials and their handling include ³⁷:
 - Glass: From bottles, jars, light fixtures, or windows.
 - **Metal:** From worn machinery parts (swarf), screws, staples, or blades.
 - **Plastic:** From packaging, conveyor belts, gloves, or tools.
 - Wood: From pallets, containers, or building structures.
 - Stones/Grit: From field harvesting of agricultural products.
 - Pests: Insects, droppings, or feathers.

Food safety standards like BRCGS mandate a robust foreign body prevention program.³⁷ This begins with a risk assessment of all raw materials and processes to identify potential sources of physical contamination. Based on this assessment, appropriate control measures must be implemented. This often involves the strategic use of detection and removal equipment.⁴⁰ Key equipment includes:

- **Filters and Sieves:** These are used to remove foreign bodies from liquids and powders. They must be of a specified mesh size, regularly inspected for damage, and records of these checks must be maintained.⁴⁰
- Metal Detectors and X-ray Systems: These are critical for detecting metal and other dense contaminants (glass, stone, dense plastic) in raw materials or finished products. The location, sensitivity, and operation of this equipment must be validated and justified. A documented procedure for routine testing (e.g., using ferrous, non-ferrous, and stainless steel test pieces) and managing rejected products is required.
- **Magnets:** Used to remove ferrous metal fragments from product flows. The type, location, and strength of magnets must be documented, and they must be regularly inspected, cleaned, and strength-tested.⁴⁰
- Optical Sorting Equipment: Advanced systems that use cameras and/or lasers to

identify and remove foreign material based on color, shape, or structure. They are highly effective for cleaning raw agricultural commodities like grains, nuts, and vegetables.⁴⁰

2.4. Radiological Contaminants

Radiological contamination of the food supply chain is a low-probability but high-consequence risk, primarily associated with nuclear accidents or emergencies. Radioactive materials released into the atmosphere can deposit on crops and soil or be carried by rain into water sources, entering the food chain. 45

The risk assessment must consider key radionuclides based on their physical properties and biological behavior ⁴⁶:

- **Iodine-131 ():** This is an immediate concern following a release due to its volatility and rapid transfer into the food chain, particularly contaminating leafy vegetables and animal feed. It is quickly transferred to milk from grazing animals. Its primary health risk is accumulation in the thyroid gland, increasing the risk of thyroid cancer. However, its short half-life of about 8 days means the risk from diminishes within a few weeks.⁴⁵
- Caesium-137 (): This radionuclide poses a significant long-term threat. With a half-life of about 30 years, it can persist in the environment for decades, continuously entering the food chain through soil uptake by plants and subsequent transfer to animals. It is also transferred relatively quickly to milk. Once ingested, it distributes throughout the body's soft tissues, increasing the risk of cancer.⁴⁵
- **Strontium-90 ():** With a half-life of about 29 years, this is another long-term concern. It behaves chemically like calcium and can accumulate in bones.

To manage these risks, international bodies have established guideline levels. The Codex Alimentarius Commission's General Standard for Contaminants and Toxins in Food and Feed (CODEX STAN 193-1995) provides guideline levels for radionuclides in foods traded internationally following a nuclear emergency. ⁴⁶ These levels are based on an intervention dose of 1 mSv per year and are used by national authorities to determine if food is safe for consumption or if protective actions, such as food restrictions, are needed. ⁴⁶

2.5. Allergenic Hazards

The management of allergenic hazards is a critical food safety and legal requirement. An allergic reaction can be severe and life-threatening, and undeclared allergens are a leading

cause of product recalls. The risk assessment for raw materials must address two distinct types of allergenic risk:

- 1. **Intrinsic Allergens:** The allergen is an inherent, expected component of the raw material. Examples include gluten in wheat flour, lactose in milk powder, soy in tofu, and peanuts in peanut butter. The primary control is accurate labeling and ensuring this information is carried through to the final product label.
- 2. Allergenic Cross-contact: This occurs when a raw material unintentionally becomes contaminated with an allergen that is not part of its composition. This can happen anywhere along the supply chain: in the field (e.g., volunteer crops), during transport (e.g., in shared containers), or at the supplier's processing facility (e.g., on shared equipment).

Regulatory requirements for allergen labeling vary globally. The European Union, for instance, mandates the declaration of 14 specific allergens, while the United States requires the labeling of 9 major food allergens. These lists include common allergens such as cereals containing gluten, crustaceans, eggs, fish, peanuts, soybeans, milk, and nuts. A raw material risk assessment must verify that all potential allergens are identified and managed in accordance with the regulations of the final market. Some ingredients, such as fermentation nutrients derived from allergenic sources, may fall into complex regulatory areas where their labeling requirement is not straightforward, necessitating a careful case-by-case evaluation. Descriptions

Effective control of allergenic risks from raw materials relies heavily on a robust supplier approval and verification program. This includes reviewing suppliers' allergen management plans, obtaining detailed specifications that declare all potential allergens (both intrinsic and through cross-contact), and potentially implementing an analytical testing program to verify "free-from" claims on high-risk ingredients.⁵¹

Part III: Risks to Food Authenticity: A Vulnerability-Based Analysis

3.1. The Landscape of Food Fraud

Food fraud, also known as Economically Motivated Adulteration (EMA), is the intentional act of deceiving consumers about the food they purchase for financial gain.⁶ Unlike food safety issues, which are typically unintentional, food fraud is a deliberate act of deception. While the

primary motivation is economic, it can lead to serious public health consequences.¹² The GFSI recognizes a wide range of fraudulent activities that must be considered in a vulnerability assessment ¹:

- **Substitution:** The partial or complete replacement of a high-value ingredient with a cheaper, undeclared alternative. Classic examples include substituting horsemeat for beef, replacing premium fish species like red snapper with cheaper ones like tilapia, or using kangaroo meat as beef trimmings.¹²
- **Dilution:** Mixing a high-value liquid or solid ingredient with a less valuable substance to increase its volume. This is common in products like extra virgin olive oil (diluted with cheaper vegetable oils), honey and maple syrup (diluted with corn syrup or cane sugar), and spices (extended with non-spice plant material).⁵
- Unapproved Enhancement: Adding an undeclared substance to a product to mask a defect or artificially enhance a perceived quality attribute. The most infamous example is the addition of melamine to milk products to give a false high reading in protein tests. Other examples include using illegal, toxic dyes in spices to improve their color. 46
- **Concealment:** Hiding the poor quality of a food or ingredient. An example is mixing expired or contaminated fruit juice with fresh juice to mask its inferiority.¹
- Mislabelling: Providing false information on the label regarding the product's origin, production method, or quantitative content. This includes selling conventionally grown grains as "organic," repackaging foreign crab meat as a domestic product, or falsely claiming a product is "100% Parmesan cheese" when it contains cellulose and other cheeses.¹
- **Counterfeiting:** The unauthorized production and sale of a product using another company's brand name and intellectual property. This can range from fake powdered milk products to counterfeit high-end wines and spirits.¹
- **Grey Market, Diversion, and Theft:** These involve the sale of genuine products that have left the secure supply chain. While the product itself is authentic, the loss of chain of custody means it could have been stored improperly (e.g., without refrigeration), leading to spoilage and a significant public health vulnerability.¹

3.2. Conducting the Vulnerability Assessment

The vulnerability assessment process operationalizes the VACCP framework by systematically evaluating the fraud drivers for each raw material. This requires gathering and analyzing a wide range of information, often from sources outside the typical food safety domain.⁸

- Information Gathering and Intelligence:
 - **Economic Factors:** Actively monitor commodity markets, trade publications, and financial news to track price volatility, supply shortages, and the economic health of

- key sourcing regions. A sudden spike in the price of vanilla, for example, dramatically increases the motivation for fraudsters to dilute it with synthetic vanillin.
- Supply Chain Factors: Map the entire supply chain for critical raw materials, from farm to factory. Identify all intermediaries, assess the length and complexity of the chain, and evaluate the level of transparency and traceability at each step.
 Geopolitical instability, corruption levels in the sourcing country, and the presence of many brokers are all red flags.⁴
- Historical Evidence and Horizon Scanning: Utilize food fraud databases, academic literature, and regulatory alert systems like the EU's Rapid Alert System for Food and Feed (RASFF) to identify historical patterns of fraud for a given material or origin.⁵
 This historical review must be complemented by active "horizon scanning" to anticipate new vulnerabilities before they lead to an incident.
- Prioritization and Control:

The output of this analysis should be a risk matrix or scoring system that prioritizes raw materials based on their overall vulnerability. High-vulnerability materials then require the implementation of enhanced mitigation strategies. These may include more stringent supplier selection criteria, requiring GFSI certification from suppliers, conducting on-site audits, increasing the frequency of authenticity testing, and implementing mass balance exercises to ensure inputs match outputs.

Table 4: Food Fraud Vulnerability Factors with Examples

Vulnerability Driver	Factor	Description	High-Risk Indicators/Example s
Motivations (Economic)	Price Volatility / High Value	Rapid or significant increases in cost create a strong incentive to substitute or dilute.	Saffron, vanilla, organic ingredients, extra virgin olive oil during poor harvest years.
	Price Asymmetries	Large price differences for the same commodity in different geographic regions.	Milk powder prices varying significantly between countries, creating an incentive for illegal trade or adulteration.8

Opportunities	Supply Chain Complexity	Long, multi-layered supply chains with many brokers and a lack of transparency.	The European horsemeat scandal, involving numerous traders across multiple countries. ¹
	Processing Nature	The material is processed in a way that removes identifying characteristics (e.g., ground, powdered, mixed).	Ground spices, minced meat, fruit juices, and oils are easier to adulterate than whole products. ⁵⁴
	Test Method Limitations	Routine quality tests can be circumvented by sophisticated adulterants.	Melamine added to milk to defeat standard protein tests based on nitrogen content. ¹²
Control Measures (Lack of)	Weak Supplier Controls	Inadequate supplier approval, verification, and auditing processes.	Sourcing from unapproved agents or brokers without full traceability to the origin.
	Insufficient Testing	Lack of a targeted authenticity testing program for high-risk materials.	Relying solely on a supplier's Certificate of Analysis without periodic independent verification.
	Historical Evidence	A known history of fraud for the specific commodity, origin, or supplier.	A long history of dilution in honey and olive oil makes these inherently high-risk materials. ¹²

3.3. Case Studies in Adulteration

Analyzing historical incidents provides invaluable lessons in the dynamics of food fraud and the failure of control systems.

- Melamine in Infant Formula (China, 2008): This incident is a stark example of an unapproved enhancement with catastrophic health consequences. The motivation was purely economic: raw milk was being diluted with water, reducing its protein content. To pass quality control tests, which used the Kjeldahl method to measure nitrogen as a proxy for protein, fraudsters added melamine, a nitrogen-rich industrial chemical.¹² The opportunity was created by a testing method that measured a proxy (nitrogen) rather than the actual substance of value (protein), a vulnerability that was ruthlessly exploited. The incident resulted in over 300,000 illnesses and at least six infant deaths, demonstrating that economically motivated fraud can become a severe food safety crisis.¹² This case highlights that a vulnerability assessment must question not only if a test is being performed, but how that test could be defeated.
- Horsemeat in Beef Products (Europe, 2013): This large-scale substitution fraud exposed the vulnerabilities of complex, international supply chains. Cheaper horsemeat was intentionally substituted for beef by a supplier and entered the supply chains of numerous processors and retailers across Europe. The motivation was the significant price difference between horsemeat and beef. The opportunity was a convoluted and opaque supply chain involving multiple traders and processors across different countries, which made traceability and verification exceptionally difficult. While this incident did not cause a major public health crisis, it resulted in massive product recalls and a profound erosion of consumer trust in major brands and the food industry as a whole. It underscored that the consequences of food fraud extend far beyond regulatory non-compliance, representing a significant business and reputational risk.
- High-Risk Commodities: Certain raw materials are perennial targets for fraud due to a combination of high value, complex supply chains, and processing methods that obscure their identity.
 - o Olive Oil: Often diluted with cheaper seed or nut oils or mislabeled as "extra virgin". 12
 - Honey: Frequently adulterated with cheaper sweeteners like corn, rice, or beet syrups.¹²
 - o Spices: Can be bulked with plant husks, sawdust, or contaminated with illegal dyes. 36
 - Seafood: Species substitution is rampant, with lower-value fish sold as premium varieties.¹²

Part IV: Risks to Legality and Quality

4.1. Navigating the Global Regulatory Maze

Beyond immediate safety and authenticity concerns, raw materials pose a significant risk to the legal compliance of the final product. A food can be perfectly safe to consume but illegal to sell if it violates the specific regulations of the target market. This distinction is critical for businesses operating in a global supply chain. A robust risk assessment must include a thorough review of legal requirements.

- Unapproved Substances: A food additive, processing aid, or flavoring may be approved
 for use in the country where the raw material is produced but banned or not yet
 approved in the country of sale.³⁴ For example, certain food dyes legal in one jurisdiction
 may be prohibited in another due to links with health concerns.³⁴ It is the manufacturer's
 responsibility to ensure every intentionally added substance complies with the
 destination market's positive lists.
- Exceeding Legal Limits: Many chemical contaminants are regulated by statutory limits. As discussed, pesticide residues must not exceed MRLs, and there are legal maximum levels for heavy metals, mycotoxins, and other contaminants.²⁰ A raw material containing a contaminant above the legal limit, even if the level is below a toxicological threshold of harm, renders the final product adulterated and illegal.⁵⁷
- Allergen Labelling Compliance: The legal obligation to declare the presence of major food allergens is strict and non-negotiable. A raw material that contains an undeclared allergen, either intrinsically or through cross-contact, will cause the final product to be misbranded, making it illegal and subject to recall.⁴⁸ The differing lists of mandatory allergens between regions (e.g., EU vs. US) add a layer of complexity that must be managed.⁴⁹
- Labelling and Origin Claims: Raw materials can impact the legality of final product labels. Using a raw material from a different country than declared would constitute mislabeling. Similarly, using a conventionally grown ingredient in a product labeled "organic" is a legal violation. National authorities, such as those in South Africa, enforce strict import regulations to prevent the entry of products that are non-compliant or pose a danger to human well-being. 57

4.2. Defining and Controlling Quality Parameters

Quality risks are distinct from safety, authenticity, and legality. A raw material can be safe, authentic, and legal, yet still be unacceptable if it fails to meet the functional or sensory attributes required for the final product. These attributes are defined in the raw material specification and are often critical to the final product's success.

The risk of non-conformance to quality parameters can lead to significant operational and commercial problems, including:

- Processing Disruptions: An ingredient with the wrong particle size could block
 equipment; a starch with incorrect viscosity could fail to thicken a sauce properly; an oil
 with the wrong fatty acid profile could behave unpredictably during frying.
- **Final Product Defects:** The use of a substandard raw material can directly impact the consumer's experience. This can manifest as off-flavors or taints, incorrect color or appearance, poor texture, or a reduced shelf-life, leading to consumer complaints and damage to brand reputation.

The risk assessment for quality involves identifying the "critical-to-quality" attributes for each raw material—those parameters that have a direct and significant impact on the process or final product. These attributes must be clearly defined in the specification with acceptable tolerances. Control measures then involve establishing appropriate verification checks upon receipt, which may range from simple sensory evaluation (e.g., checking for off-odors) to analytical testing (e.g., measuring moisture content or viscosity).

Part V: Primary Packaging as a Critical Raw Material

Primary packaging—any material that comes into direct contact with food—must be treated with the same risk assessment rigor as any food ingredient. It is not merely an inert container; it is a potential source of physical and chemical hazards that can directly impact the safety, legality, and quality of the final product.

5.1. Physical Contamination Risks from Packaging Materials

Packaging materials are a known source of extrinsic physical hazards, with glass and brittle plastics being a primary concern.³⁷ A shard of glass or hard plastic in a food product poses a

severe risk of injury to the consumer and is a frequent cause of product recalls.³⁷

Food safety standards like BRCGS require a comprehensive control program for glass, brittle plastics, ceramics, and similar materials.³⁷ The key components of such a program include:

- Policy and Register: A policy to minimize or eliminate the use of these materials
 wherever possible. Where they are unavoidable (e.g., glass jars as primary packaging,
 inspection windows on equipment), they must be included in a documented register.⁶²
- **Protection:** Essential glass and brittle plastic items in production areas must be protected against breakage (e.g., using shatterproof bulbs or applying shatter-resistant film to windows).⁶¹
- Integrity Checks: A schedule of regular, risk-based inspections must be established to check the condition of all items on the register and ensure they are not damaged. These checks must be documented.⁶²
- Breakage Procedure: A documented procedure must be in place to manage any breakage incident. This procedure must detail the steps for immediately stopping production, isolating the affected area (e.g., a 10-meter zone), quarantining all potentially contaminated product and materials, implementing specific clean-up protocols (e.g., using dedicated vacuums, not compressed air), and formally releasing the area back into production after thorough inspection.⁶²

5.2. The Science of Chemical Migration from Food Contact Materials (FCMs)

A significant chemical safety risk from packaging is migration: the transfer of chemical substances from the food contact material (FCM) into the food itself.⁶⁴ Over 6,500 chemicals are used in the manufacture of FCMs, and some of these have the potential to leach into food and pose a risk to consumers.⁶⁵ Migrating substances can include carcinogens, mutagens, or endocrine disruptors.⁶⁵

The rate and extent of migration are influenced by a complex interplay of factors ⁶⁴:

- Time and Temperature: Migration increases with both longer contact time and higher storage temperatures. 65
- Food Type: The chemical nature of the food is critical. Fatty or oily foods tend to draw out lipophilic (fat-soluble) substances from plastics, while acidic foods can accelerate the leaching of certain compounds from materials like metal cans or ceramic glazes.⁶⁸
- Packaging Properties: The type of material (e.g., plastic, paper, glass, metal), its chemical composition, and physical structure (e.g., porosity) all affect migration. The surface-area-to-volume ratio is also important; smaller packages have a higher ratio,

which can lead to proportionally greater migration per unit of food.⁶⁷

Migrating substances can be categorized as **Intentionally Added Substances (IAS)**, which are authorized components of the material (e.g., monomers, additives), and **Non-Intentionally Added Substances (NIAS)**. NIAS are impurities, reaction by-products, or degradation products that are not intended to be part of the final material but can be present and migrate.⁶⁴ NIAS pose a significant analytical and risk assessment challenge.

To manage these risks, a strict regulatory framework exists. In the European Union, the framework **Regulation (EC) No 1935/2004** sets the general principles, stating that FCMs must not transfer their constituents to food in quantities that could endanger human health or bring about an unacceptable change in the food's composition, taste, or odor. O Specific measures, such as **Regulation (EU) No 10/2011** for plastic materials, provide detailed lists of authorized substances, specific migration limits (SMLs), and rules for testing.

The cornerstone of demonstrating compliance is the **Declaration of Compliance (DoC)**. This is a legally required document that must be provided by the FCM supplier at all stages of the supply chain (except to the final consumer).⁷⁴ The DoC is the primary legal instrument for transferring critical safety information. It formally declares that the material complies with relevant legislation and, crucially, specifies the conditions of use for which it has been tested and proven safe (e.g., types of food, time, and temperature).⁷⁴ A food manufacturer's due diligence relies on obtaining, reviewing, and adhering to the specifications within the DoC for every primary packaging material used. Without a valid DoC, there is no legal or technical basis to confirm the packaging is safe for its intended purpose.

Table 5: Factors Influencing Chemical Migration from Food Contact Materials

Factor	Principle	Impact on Migration	Example
Temperature	Increased molecular mobility at higher temperatures.	Higher temperatures significantly accelerate the diffusion rate of chemicals from the packaging into the food.	Storing a beverage in a plastic bottle in a hot car will lead to greater migration than storing it in a refrigerator. ⁶⁵
Contact Time	Diffusion is a time-dependent	The longer the food is in contact with	Long-shelf-life products (e.g.,

	process.	the packaging, the more time chemicals have to migrate, until equilibrium is reached.	canned goods, UHT milk) have a higher potential for migration than fresh products. ⁶⁵
Food Composition	"Like dissolves like" principle; chemical reactivity.	Fatty foods extract non-polar substances (e.g., plasticizers). Acidic foods can react with and leach metals or other components.	Increased migration of benzene derivatives into high-fat foods like chips; acetic acid migration into candies. ⁶⁸
Packaging Material	Polymer structure, density, and presence of functional barriers.	Denser, more crystalline polymers are better barriers. Multi-layer materials may have a barrier layer to prevent migration from outer layers.	Glass and stainless steel are highly inert with very low migration, whereas some plastics and paper/board can release many chemicals. ⁶⁸
Surface Area to Volume Ratio	Relative amount of contact surface per unit of food.	Smaller pack sizes have a higher surface-to-volume ratio, leading to a potentially higher concentration of migrants in the food.	A single-serving yogurt pot has a higher ratio than a large family-sized tub, increasing relative migration potential. ⁶⁸

Part VI: Implementing a Robust Raw Material Risk Assessment Program

6.1. From Assessment to Control: Integrating with Supplier Approval and Verification

A risk assessment is only valuable if its findings are translated into effective, tangible controls. The outputs of the microbiological, chemical, physical, authenticity, and legal risk assessments must directly inform and shape the organization's supplier approval and verification program. A one-size-fits-all approach to supplier management is inefficient and ineffective.

A tiered supplier management system should be developed based on the overall risk profile of the raw material.

- High-Risk Materials: Materials identified as high-risk for safety (e.g., raw meat for Salmonella), fraud (e.g., ground spices), or allergens (e.g., peanuts) should require the most stringent supplier controls. This may include mandatory GFSI-benchmarked certification for the supplier, on-site audits conducted by the manufacturer, and a comprehensive program of analytical testing upon receipt.
- Low-Risk Materials: For materials deemed low-risk across all categories (e.g., salt from an approved, certified supplier), the control program may be less intensive, perhaps relying on a valid Certificate of Analysis (CoA) with each delivery and a less frequent supplier review schedule.

Verification activities at goods-in are the final checkpoint and must be tailored to the identified risks. This goes beyond simply checking the product name and quantity. It should include temperature checks for chilled/frozen goods, visual inspection for packaging integrity and signs of pests, verification that the CoA matches the specification, and a defined schedule of sampling for analytical testing (e.g., microbiological, authenticity, allergen) based on the material's risk profile.

6.2. Documentation, Review, and Horizon Scanning for Emerging Risks

All aspects of the raw material risk assessment process must be formally documented. This documentation serves as the evidence of due diligence and is a primary focus during audits by certification bodies and regulatory authorities. The documented assessment should clearly state the methodology used, the hazards and vulnerabilities considered for each material, the justification for the risk rating assigned, and the control measures implemented.

The risk assessment is not a static document. It must be a living system, subject to a formal review process. A review should be conducted at a planned frequency (e.g., annually) and also triggered by specific events, such as a change in supplier, a change in a raw material's formulation or origin, the emergence of a new industry-wide threat, or a product recall or complaint.

A critical component of maintaining a relevant risk assessment is **horizon scanning**. This is the proactive and systematic process of searching for and analyzing information to identify new, emerging, or changing risks before they impact the business.⁵ For raw materials, this involves actively monitoring a range of sources:

- Regulatory and Alert Systems: Regularly reviewing notifications from bodies like the EU's Rapid Alert System for Food and Feed (RASFF) can provide early warnings of new contaminants, pathogens, or fraud incidents entering the market.³¹
- Industry and Academic Sources: Keeping abreast of new scientific research, food fraud reports, and industry publications can highlight emerging hazards or vulnerabilities.
- **Economic and Geopolitical Data:** Monitoring commodity prices, weather patterns affecting harvests, and political instability in sourcing regions can help predict and preemptively address potential fraud motivations or supply chain disruptions.⁸

6.3. Recommendations for Best Practice

Implementing and maintaining a world-class raw material risk assessment program is a continuous journey, not a destination. It is a fundamental pillar of a resilient food safety and quality management system. The following principles summarize the best practices for an effective program:

- Adopt a Multi-Disciplinary Approach: The risk assessment should not be the sole responsibility of the quality department. A cross-functional team including representatives from Procurement, Research & Development, and Operations should be involved. This ensures that commercial, technical, and operational perspectives are all considered, leading to a more robust and practical assessment.
- 2. **Embrace the Methodological Trinity:** Formally implement and maintain separate but integrated risk and vulnerability assessments based on the principles of HACCP (for safety), VACCP (for fraud), and TACCP (for defence). Recognize that each requires a different mindset, data sources, and expertise.
- 3. Treat Packaging as an Ingredient: Subject all primary food contact materials to the same level of risk assessment rigor as food ingredients, paying close attention to both physical hazards and the potential for chemical migration. Make the review and verification of the Declaration of Compliance (DoC) a critical control point in the packaging approval process.

- 4. **Make it Dynamic:** The risk assessment must be a living document. Implement a formal schedule for review and establish clear triggers for ad-hoc reviews. Integrate a proactive horizon scanning process to anticipate future threats rather than simply reacting to past incidents.
- 5. **Let Risk Drive Control:** The outputs of the risk assessment must directly dictate the intensity and nature of the supplier management and raw material verification programs. Use a tiered approach to focus resources on the highest-risk materials.
- 6. **Foster a Strong Food Safety Culture:** A documented system is only as effective as the people who implement it. Senior management must lead in establishing and maintaining a positive food safety and quality culture that emphasizes the importance of vigilance, communication, and shared responsibility for protecting the product, the consumer, and the brand.⁸⁰

Works cited

- GFSI Direction on Food Fraud and Vulnerability Assessment (VACCP), accessed October 11, 2025, https://blog.foodfraudpreventionthinktank.com/gfsi-direction-on-food-fraud-and-vulnerability-assessment-vaccp/
- BRCGS Food Safety Certification SCS Global Services, accessed October 11, 2025,
 - https://www.scsglobalservices.com/services/brcgs-food-safety-certification
- 3. BRC GLOBAL STANDARD FOOD SAFETY PREVENTIVE CONTROLS FOR HUMAN FOOD RULE COMPARISON, accessed October 11, 2025, https://www.brcgs.com/media/63857/brctag-guidance-document.pdf
- 4. THE STUDY OF THE INTERSECTION BETWEEN FOOD FRAUD / ADULTERATION AND AUTHENTICITY Semantic Scholar, accessed October 11, 2025, https://pdfs.semanticscholar.org/9628/9fb9d6f4d6f6247b106576ba39db64bb8713.pdf?_gl=1*c6ws00*_ga*MTE1Njk5MDk0OS4xNjY5OTg3NDM2*_ga_H7P4ZT52H5*MTY3NjkwMDgwNS4yMS4xLjE2NzY5MDA4ODMuMC4wLjA
- 1 Food fraud vulnerability assessment tools used in food industry ..., accessed October 11, 2025, <a href="https://researchportal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.port.ac.uk/files/13333853/JACK_2019_cright_FC_Food_fraudoutle-research-portal.portal.portal.portal.portal.por
- 6. Food & Seafood: Authenticity and Integrity, accessed October 11, 2025, https://seafoodacademy.org/pdfs/Principles-Authenticty-Intregity-Food-slides.pd
- 7. HACCP Certification Food Safety Management Standards NQA, accessed October 11, 2025, https://www.nqa.com/en-ca/certification/standards/haccp
- 8. Assessment of fraud vulnerability in Dutch milk ... WUR eDepot, accessed October 11, 2025, https://edepot.wur.nl/412103
- 9. A regional guidance on criteria for good manufacturing practices/hazard analysis and critical control point (GMP/HACCP) for Asian countries FAO Knowledge Repository, accessed October 11, 2025,

- https://openknowledge.fao.org/handle/20.500.14283/I4163E
- 10. CODEX ALIMENTARIUS GENERAL PRINCIPLES OF FOOD HYGIENE (CXC 1-1969) REV. 2022, accessed October 11, 2025,
 - http://files.spazioweb.it/86/01/860186ea-045b-4a05-b241-f943d4fa0423.pdf
- 11. Introduction to GHP | GHP and HACCP Toolbox | FAO, accessed October 11, 2025, https://www.fao.org/good-hygiene-practices-haccp-toolbox/ghp/introduction-to--ghp/en
- 12. Economically Motivated Adulteration (Food Fraud) | FDA, accessed October 11, 2025,
 - https://www.fda.gov/food/compliance-enforcement-food/economically-motivate d-adulteration-food-fraud
- 14. Bad Bug Book FDA, accessed October 11, 2025, https://www.fda.gov/files/food/published/Bad-Bug-Book-2nd-Edition-%28PDF%2 9.pdf
- 15. Bad Bug Book (Second Edition) | FDA, accessed October 11, 2025, https://www.fda.gov/food/foodborne-pathogens/bad-bug-book-second-edition
- 16. The Big Six The Association of Nutrition & Foodservice Professionals, accessed October 11, 2025, https://www.anfponline.org/docs/default-source/legacy-docs/docs/fpc_022015.p df
- 17. Bad Bug Book Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, accessed October 11, 2025, https://www.canr.msu.edu/resources/bad-bug-book-handbook-of-foodborne-pathogenic-microorganisms-and-natural-toxins
- 18. Shearon Harris, Units 2 and 3, Attachment 2.4-1AD U.S. ... NRC, accessed October 11, 2025, https://www.nrc.gov/docs/ML0907/ML090770978.pdf
- 19. Chemical contaminants in food and feed | EFSA, accessed October 11, 2025, https://www.efsa.europa.eu/en/topics/topic/chemical-contaminants-food-feed
- Crop Protection: Maximum Residue Limits CropLife South Africa, accessed October 11, 2025, https://www.croplife.co.za/CropProtection/MaximumResidueLimits
- 21. MAXIMUM RESIDUE LIMITS FOR CROP PROTECTION PRODUCTS ON PEANUTS SOUTH AFRICA, EUROPE & JAPAN January 2023 Grain SA Home, accessed October 11, 2025,
 - https://www.grainsa.co.za/upload/report_files/2023_01_MRLs_for_export_Peanuts_ __Jan_2023_FINAL.pdf
- 22. Maximum Residue Limits(MRL's) Department of Agriculture, accessed October 11, 2025,
 - https://www.nda.gov.za/index.php/publication/538-maximum-residue-limits-mrls
- 23. Regulations: Pesticide residues that may be present in foodstuffs ..., accessed October 11, 2025,

- https://www.gov.za/sites/default/files/gcis_document/202002/43008gon119.pdf
- 24. Maximum Limits for Pesticide Residues Present in Foodstuffs ASC Consultants, accessed October 11, 2025,
 - https://ascconsultants.co.za/legislation-maximum-limits-for-pesticide-residues/
- 25. Regulations Governing the Maximum Limits for Pesticides Residues that May Be Present In Foodstuffs National Department of Health, accessed October 11, 2025.
 - https://www.health.gov.za/wp-content/uploads/2024/03/Regulations-governing-the-maximum-limits-for-pesticide-residues-that-may-be-present-in-Foodstuffs-Amendment-No.4388-16-February-2024-1.pdf
- 26. Development of rapid detection systems for enrofloxacin, tylosin, malachite green residues in animal food products The Hong Kong University of Science and Technology, accessed October 11, 2025, https://researchportal.hkust.edu.hk/en/studentTheses/development-of-rapid-detection-systems-for-enrofloxacin-tylosin-m
- 27. CONTAMINANTS IN THE FOOD CHAIN EFSA, accessed October 11, 2025, https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/contaminants in the food chain.pdf
- 28. Life before, during and after Alltech Young Scientist, accessed October 11, 2025, https://www.alltech.com/blog/life-during-and-after-alltech-young-scientist
- 29. Chemicals in food | EFSA Europa.eu, accessed October 11, 2025, https://www.efsa.europa.eu/en/topics/topic/chemicals-food
- 30. Metals as contaminants in food EFSA Europa.eu, accessed October 11, 2025, https://www.efsa.europa.eu/en/topics/topic/metals-contaminants-food
- 31. The Rapid Alert System for Food and Feed (RASFF) database in support of risk analysis of biogenic amines in food | Request PDF ResearchGate, accessed October 11, 2025, https://www.researchgate.net/publication/257273287_The_Rapid_Alert_System_forpood_and_Feed_RASFF_database_in_support_of_risk_analysis_of_biogenic_amines.pdf.
- 32. Contaminants in the Food Chain | EFSA Europa.eu, accessed October 11, 2025, https://www.efsa.europa.eu/en/science/scientific-committee-and-panels/contam
- 33. Annual call for continuous collection of chemical contaminants occurrence data in food and feed | EFSA European Union, accessed October 11, 2025, https://www.efsa.europa.eu/en/call/annual-call-continuous-collection-chemical-contaminants-occurrence-data-food-and-feed-0
- 34. Identifying Illegal Food Products Using Chromatography News-Medical.Net, accessed October 11, 2025, https://www.news-medical.net/life-sciences/Identifying-Illegal-Food-Products-Using-Chromatography.aspx
- 35. What Is Food Fraud? | FSNS, accessed October 11, 2025, https://fsns.com/what-is-food-fraud/

nes in food

36. FSM 285: Examples of Food Fraud – Food Adulteration | CAHNRS News, accessed October 11, 2025, https://news.cahnrs.wsu.edu/podcasts/fsm-285-examples-of-food-fraud-food-a

dulteration/

- 37. INDUSTRY SPOTLIGHT Foreign Body Contamination | BRCGS, accessed October 11, 2025,
 - https://www.brcgs.com/about-brcgs/news/2025/industry-spotlight-foreign-body-contamination/
- 38. Best Practice Guideline Foreign Body Control | BRCGS, accessed October 11, 2025,
 - https://www.brcgs.com/product/best-practice-guideline-foreign-body-control/p-32812/
- 39. How effective is your foreign object management? Sesotec, accessed October 11, 2025,
 - https://www.sesotec.com/en/blog/blog-detail/how-effective-is-your-foreign-object-management
- 40. BRCGS V9 (4.10 Foreign-body detection and removal equipment) SafetyCulture, accessed October 11, 2025, https://public-library.safetyculture.io/products/brcgs-v9-4-10-foreign-body-dete
 - nttps://public-library.safetyculture.lo/products/brcgs-v9-4-10-foreign-body-detection-and-removal-equipment-0p3gv2nqpgurso6q
- 41. BRCGS Food Safety Issue 9 & How X-ray Inspection Meets Global Regulations, accessed October 11, 2025,
 - https://www.eaglepi.com/blog/brcgs-food-safety-issue-9-x-ray/
- 42. food-safety-issue-8-checklist-english.docx brcgs, accessed October 11, 2025, https://www.brcgs.com/media/1055378/food-safety-issue-8-checklist-english.docx
- 43. Food control and agricultural countermeasures to nuclear emergencies | IAEA, accessed October 11, 2025, https://www.iaea.org/topics/food-control-and-agricultural-countermeasures
- 44. Radiation contamination assessment in agriculture | IAEA, accessed October 11, 2025, https://www.iaea.org/topics/assessment-of-contamination-in-agriculture
- 45. Radioactivity in food after a nuclear emergency World Health Organization (WHO), accessed October 11, 2025, https://www.who.int/news-room/questions-and-answers/item/radioactivity-in-food-after-a-nuclear-emergency
- 46. INFOSAN note Radionuclides and food FINAL, accessed October 11, 2025, https://www.fao.org/fileadmin/user_upload/agns/pdf/nuclear_accidents_radioactive_contamination_foods.pdf
- 47. Accidental Radioactive Contamination of Human Food and Animal Feeds: Recommendation for State and Local Agencies FDA, accessed October 11, 2025, https://www.fda.gov/media/74043/download
- 48. Food Labelling Tshwane Economic Development Agency, accessed October 11, 2025, https://teda.org.za/food-labelling/
- 49. Food Regulations: Europe vs. the US Tilley Distribution, accessed October 11, 2025, https://www.tilleydistribution.com/insights/food-regulations-in-europe-vs-the-us/
- 50. MD 88 50DCU Flavour Adjunct Cheese and Yoghurt Making, accessed October 11, 2025,

- https://www.cheeseandyogurt.co.uk/products/md-88-50dcu-flavour-adjunct
- 51. Gluten/gliaden testing added to food testing services AltaBioscience, accessed October 11, 2025,
 - https://altabioscience.com/news/glutengliaden-testing-added-food-testing-services/
- 52. Food Fraud Examples: Types and Real-World Cases SGS Digicomply, accessed October 11, 2025, https://www.digicomply.com/blog/food-fraud-examples-types-and-real-world-c
- ases
 53. Understanding Food Fraud, Food Defense, Authenticity, and Adulteration of
- Foods Eurofins, accessed October 11, 2025,

 https://www.eurofinsus.com/food-testing/resources/understanding-food-fraud-food-defense-authenticity-and-adulteration-of-foods/
- 54. Mechanisms and Health Aspects of Food Adulteration: A Comprehensive Review PMC, accessed October 11, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC9818512/
- 55. DOCTOR OF PHILOSOPHY A blueprint for food fraud mitigation and prevention for the beef industry Robson, Kelsey Queen's University Belfast, accessed October 11, 2025, https://pure.qub.ac.uk/files/231422119/A_blueprint_for_food_fraud_prevention_and_mitigation_for_the_beef_industry.pdf
- 56. Health Ministry tightens measures amid fake powdered milk scandal VOV.VN, accessed October 11, 2025, https://english.vov.vn/en/society/health-ministry-tightens-measures-amid-fake-p owdered-milk-scandal-post1192837.vov
- 57. South Africa Republic of Food and Agricultural Import Regulations and, accessed October 11, 2025, https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=food%20and%20agricultural%20import%20regulations%20and%20standards%20-%20narrative_pretoria_south%20africa%20-%20republic%20of_8-12-2009.pdf
- 58. Food Allergy Labeling Laws: International Guidelines for Residents and Travelers PMC, accessed October 11, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10169132/
- 59. Comparison of international food allergen labeling regulations ResearchGate, accessed October 11, 2025, https://www.researchgate.net/publication/224917653_Comparison_of_internation al food allergen labeling regulations
- 60. The Role of Food Packaging in Physical Contamination FlexXray, accessed October 11, 2025,
 - https://flexxray.com/the-role-of-food-packaging-in-physical-contamination/
- 61. Glass and Brittle Plastics American Society of Baking, accessed October 11, 2025, https://asbe.org/article/glass-and-brittle-plastics/
- 62. Controlling glass, brittle plastic and ceramic materials Techni-K, accessed October 11, 2025,

- https://techni-k.co.uk/contamination-control/controlling-glass-brittle-plastic-and-ceramic-materials/
- 63. Avebe Procedure, accessed October 11, 2025, https://www.avebe.com/Portals/19/Glass_Policy.pdf
- 64. www.researchgate.net, accessed October 11, 2025, https://www.researchgate.net/publication/302480712 Chemical Migration from Food Packaging to Food#:~:text=FCMs%20can%20transfer%20chemicals%20in to,NIAS)%20can%20migrate%20into%20food.
- 65. Chemical Migration from Food Packaging to Food | Request PDF, accessed October 11, 2025,

 https://www.researchgate.net/publication/302480712 Chemical Migration from Food Packaging to Food
- 66. Food Packaging and Chemical Migration: A Food Safety Perspective PMC, accessed October 11, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC12096275/
- 67. Full article: Robust forecasting of packaging chemical migration into water and food, accessed October 11, 2025, https://www.tandfonline.com/doi/full/10.1080/10942912.2025.2558009
- 68. Chemical migration from packaging into foods and beverages: A framework to evaluate different packaging options, accessed October 11, 2025, https://foodpackagingforum.org/wp-content/uploads/2022/08/FPF_Packaging_Migration_Framework_v1.pdf
- 69. Chemical Migration of Polycyclic Aromatic Hydrocarbons and Other Compounds from Plastic Food Packaging: Assessment of Food Safety Risks and Health Impacts, accessed October 11, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11941965/
- 70. Colpac Contact Grill Bag 195 x 170 x 40mm Wholesale Online, accessed October 11, 2025, https://www.wholesaleonline.co.uk/colpac-contact-grill-bag-195mm-1531824.htm
- 71. Legislation European Commission's Food Safety, accessed October 11, 2025, https://food.ec.europa.eu/food-safety/chemical-safety/food-contact-materials/legislation_en
- 72. Discover Premium Gourmet Hampers Luxury Food Gifts Delivered, accessed October 11, 2025, https://www.accio.com/plp/gourmet-hampers
- 73. Material Testing-Shenzhen DTi Technology Testing Co., Ltd., accessed October 11, 2025, https://www.deesev.com/en/food/
- 74. A Guide to EU Declarations of Compliance for Food Contact Materials, accessed October 11, 2025, https://www.intertek.com/packaging/testing/declaration-of-compliance-for-food-contact-materials/
- 75. EU Declaration of Compliance for Plastic Food Contact Materials | Measurlabs, accessed October 11, 2025, https://measurlabs.com/blog/eu-declaration-of-compliance/
- 76. EU Declaration of Compliance (DoC) for Food Contact Materials (FCMs) ChemSafe, accessed October 11, 2025,

- https://www.chemsafe-consulting.com/2022/02/15/eu-declaration-of-compliance-doc-for-food-contact-materials-fcms/
- 77. Food Contact Material Compliance An Overview IFST, accessed October 11, 2025,
 - https://www.ifst.org/resources/information-statements/food-contact-material-compliance-overview
- 78. (PDF) THE RAPID ALERT SYSTEM FOR FOOD AND FEED (RASFF). THE PLACE IN SCIENTIFIC RESEARCH, LIMITATIONS AND POSSIBILITIES OF DATA USE ResearchGate, accessed October 11, 2025, https://www.researchgate.net/publication/390435371 THE RAPID ALERT SYSTEM FOR FOOD AND FEED RASFF THE PLACE IN SCIENTIFIC RESEARCH LIMITATI ONS AND POSSIBILITIES OF DATA USE
- 79. Analysis of the original notifications in the Tuscany region "Rapid Alert System for Food and Feed" in the seven-year period 2015-2021 PubMed Central, accessed October 11, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11154170/
- 80. Management's role in fostering a food safety culture: Guidance from CODEX and GFSI SGS, accessed October 11, 2025, https://www.sgs.com/en-th/news/2025/02/managements-role-in-fostering-a-food-safety-culture-guidance-from-codex-and-gfsi
- 81. Certified Food Safety Management Systems Assessed through the Lenses of Food Safety Culture and Locus of Control AIR Unimi, accessed October 11, 2025, https://air.unimi.it/retrieve/d38ea0d7-f375-46da-9a35-a390c241a3f6/Foods%20202024%20Food%20safety%20culture%20and%20locus%20of%20control.pdf

